
1

A 1GHz 133.9fJ Neural Spike Sorting 6-bit Absolute-Value Detector
Jonathan Hurwitz, Vilius Vysniauskas, Nathan Lee

I. BACKGROUND OF DESIGN

To solve the problem of comparing the absolute value of a
6-bit neural spike input (X) to some threshold (T), we opted for
a custom design using static CMOS and PTL that effectively
combines calculating the absolute value and comparison into
a single logic stage. Our goal was to output 1 if |X| > T and
0 otherwise.

In order to avoid creating an adder (to add 1 after flipping
bits in the case of a negative input) and then a comparator, we
took advantage of the conditions on input: X will range from
-31 to 31 and T is guaranteed to be positive. If we assume that
we have access to the absolute value of X, then we can figure
out whether |X| > T by using properties of 2’s complement
and bit-wise addition. By flipping all of the bits of T and
adding to |X|, we can use knowledge of carries and MSBs to
determine the answer. When T’s bits are flipped, this represents
inverting the sign and subtracting 1: T = −T − 1. If we add
|X| to T , the sum will be zero or positive so long as |X| > T ,
since T is one less than the negative of T. The problem has
been reduced to determining whether a sum is positive or not.

By inverting T, we guarantee that the MSB of T will be 1.
Assuming |X| is available, we also know that the MSB of |X|
will be 0. Therefore, the only way to make the sum positive is
if the carry-out (C5) of the fifth bit is 1. In this case, |X| > T

and output is 1. If C5 is 0, then the sum will be negative
and |X| ≤ T , with output 0. Our implementation focuses on
calculating a 5th bit carry out by using the same logic as a
carry lookahead adder would, sans any sum logic. By using
CLA logic, we also realized that we could incorporate the
absolute-value generator into the carry logic and save an extra
adder by setting Cin = 1 when X is negative (sixth bit is 1).

The logical expression for C5 is:

C5 = G4 +G3P4 +G2P4P3 +G1P4P3P2

+G0P4P3P2P1 + CinP4P3P2P1P0

(1)

In order to save transistors, this can be factored:

C5 = G4+P4(G3+P3(G2+P2(G1+P1(G0+P0Cin)))) (2)

II. IMPLEMENTATION

The input stage consists of an input buffer, a MUX to select
between X or X , and an intermediate stage output buffer. The
sixth bit of X is used as the selector for the MUX. If X is
negative, X is selected as input to the second stage. Otherwise,
X is passed directly to an output buffer and then to the second
stage. The MSB of X is also passed into the Cin port of the
second stage. Therefore, if X is negative, the second stage will
receive the flipped bits and automatically incorporate addition
by 1 via Cin, effectively calculating |X|. The second stage
calculates C5.

Figure 1: Stage 1 input buffer and MUXes.

The critical path is from X0 input to the output C5. This

2

signal travels through 2 inverters and a T-gate in the first stage,
and 9 NOR gates, 2 NAND gates, and 4 inverters in the second
stage.

Delay was decreased by reducing the size of fan-out 1 gates
to 325:325nm, 325:215nm, 325:215nm for NAND, NOR, and
NOT respectively. Since the fan-out of C5 is 32 reference
inverters, we sized the output inverter by 4x to 2.6:1.72um
and gradually decreased the driving capability upstream. The
(n−1)th NOR gate was sized at 1.3um:860nm. The (n−2)th
NOR gate was sized at 650:430nm.

III. LAYOUT

Our layout prioritized minimization of wire lengths. It ended
up having an aspect ratio of 1.61. Area minimization was
also prioritized, which resulted in a narrow, taller design and
hence a larger than expected aspect ratio. When taking into
consideration our space savings, area was 0.631um2. The X
limit was 21.905nm and the Y limit was 35.48nm.

The layout has indentations which reduce the total area, but
since aspect ratio is calculated based on the limits of X and
Y, this does not improve our ratio.

Figure 2: Layout cell showing stage 1 integrated with stage 2. The critical path is
also shown traced in gray. The yellow boxes outline some of the logical sub-cells.

The critical path is from X0 input through the carry logic
and to the output. This signal goes through the most gates.
For reference, the carry logic path can be seen in figure 7 on
the last page. It can be represented as follows:

tcrit = tTGate + 2 ∗ tNAND + 4 ∗ tNOT + 9 ∗ tNOR (3)

It was expected that NOR gates would contribute the most to
delay on a unit-level.

IV. SIMULATION RESULTS

The circuit is functionally correct. Results of the testbench
simulation are shown below, with V dd = 1v.

Figure 3: Functional check confirming that output is as expected. This was run at
V dd = 1v.

This minimal design allowed us to scale Vdd to 587.5mV

without exceeding the limit of the clock period. Energy was
133.946fJ . The worst case tp = 994.267ps was within the
limit of the clock period (1ns) and was through the critical
path. This is shown in Figure 3.

It’s possible to maintain low energy usage while leaving
enough headroom to compensate for any timing issues. Practi-
cally speaking, this is the case that this circuit might operate in
when inserted between clocked modules. At V dd = 612.5mV ,
there is approximately 106ps of headroom, with a critical path
delay tp = 893.999ps. This case is shown in Figure 4.

The best-case delay occurs at the worst-case energy usage
point, when V dd = 1v. Energy was 396.79fJ and critical
path delay was tp = 370.679ps. This is shown in figure 5.

3

Figure 4: Test bench result with V dd = 587.5mV . This represents the best-case
energy and worst-case delay since it approaches the 1ns limit.

Figure 5:Test bench result with V dd = 612.5mV . This is a headroom case.

Figure 6:Test bench result with V dd = 1V . This is the best-case delay and worst-
case energy.

Carry logic shown below. Stage 1 is represented as black
box in the upper left corner.

4

Figure 7: C5 logic calculation. Stage 1 is shown as a black box on the upper left.

	Background of Design
	Implementation
	Layout
	Simulation Results

