
1

Image Calculator
CS152B Digital Design Project Laboratory

TA: Babak Moatamed

Students: Jonathan Hurwitz, Alex Peters, Vilius Vysniauskas

I. INTRODUCTION

Our aim was to create a calculator in MicroBlaze that can
”see” inputs and evaluate an expression for the user. By using
image processing in order to detect numbers and operators (+,
-, /, *), our calculator can evaluate basic expressions and then
output the result to the user by writing to the console over a
serial connection. The use case is as follows:

1) The user turns on the calculator and waits for the camera
to initialize. The initialization sequence is complete
when the red box appears on the screen.

2) To capture a number or operator, place it within the
view of the red box. Flip the first switch to capture the
number. Repeat this step until your entire expression has
been captured.

3) To clear an expression, flip the third switch. The result
can be displayed by flipping the second switch.

The calculator currently only supports four digit operands and
a single operator per expression, but this can be changed by
adjusting the size of our character buffer. Erroneous corner
cases such as back to back operators, starting with an oper-
ator, and divide by zero were handled. Relevant error output
messages are displayed to the user when one of these cases is
encountered.

II. PROJECT BACKGROUND

Our final project began at a much different starting point
than where it is now. Initially, we intended to combine mul-
tiple hardware modules to create a semi-autonomous, color-
retrieving robot. To accomplish this we wanted to integrate
both the provided iRobot and VMODCam modules in order
to build a iRobot that can see its surroundings, detect one of
several colors, move towards the color, and come back to its
starting point (in essence retrieving the color).

We set out by creating a new EDK project based purely
on the VMODCam module. After importing the necessary
files, updating the necessary IP cores (an automatic process
done by the Xilinx Platform Studio), and waiting for the long

export, we had a working hardware design with all the correct
peripherals (mainly HDMI, DVMA, two IICs, and camera
controllers). Following the export to the SDK, we continued
with the tutorial by assembling a project structure and inserting
the tutorial code.

Programming the FPGA and running the project for the first
time left us very confused. The screen, connected with HDMI,
outputted two adjacent green gradients and nothing else. This
was perplexing but we soon realized that the cameras needed a
long period of time (roughly 5 to 7 minutes) to initialize and
begin a real-time feed to the monitor. Furthermore, we also
discovered that the tutorial code for the camera initialization
contained useful progress and debugging statements. To see
these, we connected the FPGA to a serial port and listened to
the appropriate COM channel.

With this quick success, we decided to integrate the iRobot
hardware into the existing project so that we would not
have to worry about breaking anything later on (this was
naive thinking in hindsight). The iRobot tutorial required a
different UART peripheral (a xps uart16650 as opposed to
a xps uartlite), along with two GPIO peripherals, for LED
and push button support, and an interrupt controller. After re-
mapping addresses and successfully exporting the design, we
ran into our first major hurdle - the SDK was simply unable
to link the included libraries in our C code. A week and a half
later, we noticed that our interrupt controller did not have the
correct output pin configured, and even though the hardware
design did not fail to export, this was the cause of the linker
failure in the SDK.

Another obstacle tackled, we regained motivation and
moved forward, only to quickly crash into another Xilinx
barrier. Although the code was now linking and compiling,
the two different code examples interfered with each other. For
example, if we ran the camera code first, the camera would
work but the iRobot code would not execute with the program
seemingly hanging forever (debugging was not helpful - the
program executed random jumps to weird memory locations).

2

If we put the iRobot code first, the iRobot code would suc-
cessfully execute the provided basic commands but the camera
initialization steps would hang on register write instructions.
After additional inspection, we came to the conclusion that
the two different UART peripherals were the cause (since the
camera tutorial specified two of the same type whereas the
iRobot tutorial only needed one).

At this point in time, 2 and a half weeks after starting, we
could not spend more time debugging our hardware design
while still expecting to finish. Because of this time pressure,
we decided that we would continue only working with the
VMODCam module in order to avoid the debugging nightmare
of attempting to fuse two different peripheral configurations.
As we brainstormed new ideas to implement with a sole
camera module, we agreed upon a functional and useful image
processing project.

The image processing calculator uses the Virtex-5 FPGA
with Digilent Genesys development board. The VMOD cam-
era module was used in order to capture images. Data was
carried over the VHDCI cable and images were displayed on
the monitor via an HDMI to DVI cable. Serial data was read
from the FPGA via a serial to USB type A converter cable.

III. TUTORIAL

Our final project is based on the provided VMODCam
hardware design configuration and sample code (on CCLE).
We used a Xilinx Virtex 5 FPGA board. Here are the steps
we took:

1) Download and unzip the VMOD Camera Tutorial.zip
archive from CCLE

• This location should contain four folders: binaries,
doc, IPRepository, and proj.

• The binaries folder has a bit file, but this tutorial
will generate its own

• The IPRepository folder holds the peripherals you
need to add to the XPS project to connect the
VmodCam to the FPGA board

• The proj folder holds several test projects, as well
as system.xmp (which will be our starting point)

2) Open proj/system.xmp in Xilinx XPS

• Go through the IP update process if prompted,
updating all IP cores

3) Add a GPIO module, for DIP switches

• Connect it to external ports - assigned to GPIO IO
(as shown below)

Figure 1: An example of the ports configuration.

• Set the UCF file correctly, matching up the named
peripheral pins with the labelled physical pins on
the FPGA board

4) Export the design to SDK
5) In the SDK, create a new workspace and an empty

Application Project inside it
6) Import (as a filesystem) the tutorial code from the

following directory: proj/TestApp VmodCam/src

• You should now have five files under your projects
source (src) folder: cam ctrl header.h , cam ctrl.c ,
main.c , vmodcam cfg.h , vmodcam header.h

7) Change memory region mapping

• Go to the project lscript.ld file
• Change all from ddr2 sdram MPMC BASEADDR

to ilmb cntlr dlmb cntlr

8) Make sure to setup FPGA board jumpers correctly

• The VSWT x VUEWP (JP1) jumpers on the right
hand side in between the two VHDCI ports on the
board should be bridged

• The M2 voltage mode jumpers on the upper right
of the board should be bridged

• No other mode (M1 or M0) should be connected
• Other jumpers on the board should be ok at their

default states

9) Connect and configure necessary cables. The figure
below shows (from left to right) the VHDCI, HDMI
to DVI, power, USB, and serial cable connected to the
Genesys breakout board:

3

Figure 2: The fully connected system with VMOD camera, HDMI to DVI cable,
DC-in, USB, and serial.

• Connect serial cable (to read STDOUT debug state-
ments)

– You may need to obtain an adapter from serial to
USB in order to connect it to the computer which
is running the SDK

– Enable the SDK terminal to output the serial port,
as shown below:

Figure 3: ”Run configurations” window allowing user to connect STDIO to the
console. Options to configure port and Baud rate as well.

– Make sure to select the correct baud rate (115200
if VMODCam module) and device (for us it was
COM3)

– It is also possible to do this with the PUTTY pro-
gram, but make sure that only one is connected
to the COM port at a time

• Connect all other cables

– HDMI to desired monitor for camera output
– USB from computer which contains the project

code (to upload to FPGA)
– DC power cable to power brick

10) Program the FPGA (be extra careful to select the correct
.bit and .bmm files)

11) Run the project on hardware (from the menu bar)

• This should be enough to get basic camera output
working

• Two green and adjacent gradients should appear as
debug statements begin to show up on the terminal
(either in SDK or in Putty depending on previous
steps)

• The two cameras take about 5 minutes to initialize,
so be patient

• The last debug output: Setting up Camera Control
Block successfully!

12) Tips & Comments

• To move the second camera output off the screen,
change (in main.c):
CamCtrlInit(XPAR CAM CTRL 1 BASEADDR,
MODE, 0) to

4

CamCtrlInit(XPAR CAM CTRL 1 BASEADDR,
MODE, 2560)

• The cameras support three different modes:
640x480p, 800x600p, 1280x720p

– There are three defines associated with them:
#define CAM CFG 640x480P 0x0001
#define CAM CFG 800x600 0x0002
#define CAM CFG 1280x720P 0x0004

– To change modes, modify the following lines (in
main.c):
CamIicCfg(XPAR CAM IIC 0 BASEADDR,
MODE DEFINE);
CamIicCfg(XPAR CAM IIC 1 BASEADDR,
MODE DEFINE);
CamCtrlInit(XPAR CAM CTRL 0 BASEADDR,
MODE DEFINE, 1280);
CamCtrlInit(XPAR CAM CTRL 1 BASEADDR,
MODE DEFINE, 0);
Note: Put the desired mode in the
MODE DEFINE parameter

• The monitor output will be vertically stretched com-
pared to the captured image

– For example, if we are capturing in the
1280x720p mode, the image will be displayed
in stretched manner on a 1280x1024 monitor (in
our case)

IV. DESIGN

A. main function

The core logic is implemented in ”main.c”, and consists of
a main function as well as a helper function ”printAnswer”.
The code for the main function is shown below, broken into
several blocks for ease of explanation:

1 i n t main () {
2 u32 lDvmaBaseAddress = XPAR DVMA 0 BASEADDR;
3 i n t posX , posY ;
4
5 / / I n i t i a l i z e s w i t c h e s

6 X G p i o I n i t i a l i z e (& s w i t c h e s , XPAR DIP SWITCHES 8BIT DEVICE ID) ;
7 X G p i o S e t D a t a D i r e c t i o n (& s w i t c h e s , 1 , 7) ;
8
9 f o r (posX = 0 ; posX<2560; posX ++)

10 f o r (posY = 0 ; posY<720; posY ++) / / 720

11 XIo Out16 (XPAR DDR2 SDRAM MPMC BASEADDR +
12 2∗(posY∗2560+posX) , 0) ;
13
14 f o r (posX = 0 ; posX<2560; posX ++)
15 f o r (posY = 0 ; posY<720; posY ++) / / 720

16 XIo Out16 (XPAR DDR2 SDRAM MPMC BASEADDR +
17 2∗(posY∗2560+posX) , (posX/40)<<4);
18
19 XIo Out32 (lDvmaBaseAddress + blDvmaHSR , 4 0) ; / / h sync

20 XIo Out32 (lDvmaBaseAddress + blDvmaHBPR , 2 6 0) ; / / hbpr

21 XIo Out32 (lDvmaBaseAddress + blDvmaHFPR , 1 5 4 0) ; / / h f p r

22 XIo Out32 (lDvmaBaseAddress + blDvmaHTR , 1 6 5 0) ; / / h t r

23 XIo Out32 (lDvmaBaseAddress + blDvmaVSR , 5) ; / / v s y n c

24 XIo Out32 (lDvmaBaseAddress + blDvmaVBPR , 2 5) ; / / vbpr

25 XIo Out32 (lDvmaBaseAddress + blDvmaVFPR , 7 4 5) ; / / v f p r

26 XIo Out32 (lDvmaBaseAddress + blDvmaVTR , 7 5 0) ; / / v t r

27
28 XIo Out32 (lDvmaBaseAddress + blDvmaFWR , 0 x00000500) ; / / f rame w i d t h 0 x00000500

29 XIo Out32 (lDvmaBaseAddress + blDvmaFHR , 0x000002D0) ; / / f rame h e i g h t 0x000002D0

30 XIo Out32 (lDvmaBaseAddress + blDvmaFBAR , XPAR DDR2 SDRAM MPMC BASEADDR) ; / / f rame base addr

31 XIo Out32 (lDvmaBaseAddress + blDvmaFLSR , 0x00000A00) ; / / f rame l i n e s t r i d e 0 x00000A00

32 XIo Out32 (lDvmaBaseAddress + blDvmaCR , 0 x00000003) ; / / dvma enab le , d f l e n a b l e

33
34 CamIicCfg (XPAR CAM IIC 0 BASEADDR , 0) ;
35 CamIicCfg (XPAR CAM IIC 1 BASEADDR , 0) ;
36 C a m C t r l I n i t (XPAR CAM CTRL 0 BASEADDR, 0 , 2 5 6 0) ;
37 C a m C t r l I n i t (XPAR CAM CTRL 1 BASEADDR, 0 , 0) ;

The code block above is responsible for camera configuration
and initialization. This code was provided in the VMOD
camera tutorial files. We were able to obtain a full size image
on the screen by shifting the second camera off by 2560 pixels,
shown in the first ”CamCtrlInit”. Also, we learned that by
enabling both cameras, the exposure levels were much better
than by enabling just one. This led us to believe that there is
some sort of mixing going on in the data stream rather than
discrete channels for each camera.

1
2 u8 s w i t c h v a l = 0 ;
3 u8 c a p t u r e d a t a = 0 ;
4 u8 o l d c a p t u r e d a t a = 0 ;
5 u8 c o u n t = 0 ;
6
7 u8 num vals = 0 ;
8 u8 g e t a n s w e r = 0 ;
9 u8 c l e a r = 0 ;

10 u8 h a s b e e n c l e a r e d = 1 ;
11
12 s h o r t c a p t u r e d c h a r s [5] ;
13 char e x p r e s s i o n [EXPRESSION SIZE]= {0};
14 char op = ’ $ ’ ;
15
16 whi le (1) {
17 f o r (posX = 530 ; posX<751; posX++){
18 f o r (posY = 250 ; posY<261; posY++){
19 XIo Out16 (XPAR DDR2 SDRAM MPMC BASEADDR +
20 2∗(posY∗2560+posX) , 0 xf00) ;
21 }
22 }
23 f o r (posX = 530 ; posX<751; posX++){
24 f o r (posY = 460 ; posY<471; posY++){
25 XIo Out16 (XPAR DDR2 SDRAM MPMC BASEADDR +
26 2∗(posY∗2560+posX) , 0 xf00) ;
27 }
28 }
29
30 f o r (posX = 530 ; posX<541; posX++){
31 f o r (posY = 260 ; posY<461; posY++){
32 XIo Out16 (XPAR DDR2 SDRAM MPMC BASEADDR +
33 2∗(posY∗2560+posX) , 0 xf00) ;
34 }
35 }
36
37 f o r (posX = 740 ; posX<751; posX++){
38 f o r (posY = 260 ; posY<461; posY++){
39 XIo Out16 (XPAR DDR2 SDRAM MPMC BASEADDR +
40 2∗(posY∗2560+posX) , 0 xf00) ;
41 }
42 }

The while loop above continuously redraws the four rectangles
that make up our red box in the center of the screen.

1
2 o l d c a p t u r e d a t a = c a p t u r e d a t a ;
3
4 s w i t c h v a l = XGpio Disc re teRead (& s w i t c h e s , 1) ;
5 c a p t u r e d a t a = s w i t c h v a l & 0x1 ;
6 g e t a n s w e r = s w i t c h v a l & 0x2 ;
7 c l e a r = s w i t c h v a l & 0x4 ;
8
9 i f (c l e a r && ! h a s b e e n c l e a r e d) {

10 op = ’ $ ’ ;
11 num vals = 0 ;
12 c a p t u r e d a t a = 0 ;
13 o l d c a p t u r e d a t a = 0 ;

5

14 i n t i = 0 ;
15 f o r (; i < EXPRESSION SIZE ; i ++)
16 e x p r e s s i o n [i] = 0 ;
17 x i l p r i n t f (” Your e x p r e s s i o n has been c l e a r e d .\n\r ”) ;
18 h a s b e e n c l e a r e d = 1 ;
19 }
20 / / S w i t c h OFF−> ON

21 e l s e i f (! o l d c a p t u r e d a t a && c a p t u r e d a t a){
22 / / S t a r t p r o c e s s i n g t h e g r i d b l o c k s

23 c o u n t = 0 ;
24 c a p t u r e d c h a r s [0] = p r o c e s s I m a g e (5 4 0 , 2 6 0) ;
25 c o u n t ++;
26 }
27 / / S w i t c h ON−> ON

28 e l s e i f (o l d c a p t u r e d a t a && c a p t u r e d a t a) {
29 i f (c o u n t < 5) {
30 c a p t u r e d c h a r s [c o u n t] = p r o c e s s I m a g e (5 4 0 , 2 6 0) ;
31 c o u n t ++;
32 }
33 }
34 / / S w i t c h ON−> OFF

35 e l s e i f (o l d c a p t u r e d a t a && ! c a p t u r e d a t a) {
36 char r e s u l t = d e t e r m i n e C h a r (c a p t u r e d c h a r s , c o u n t) ;
37 i f (r e s u l t == ’ ? ’) {
38 x i l p r i n t f (” P l e a s e re−e n t e r number o r o p e r a t o r , u n a b l e t o
39 scan c o r r e c t l y .\n\r ”) ;
40 c o n t i nu e ;
41 }
42 i f (r e s u l t == ’+ ’ || r e s u l t == ’−’
43 || r e s u l t == ’∗ ’ || r e s u l t == ’ / ’) {
44 i f (op == ’ $ ’) {
45 i f (num vals == 0) {
46 x i l p r i n t f (” F i r s t i n p u t c a n n o t
47 be an o p e r a t o r .\n\r ”) ;
48 c o n t in u e ;
49 }
50 op = r e s u l t ;
51 }
52 e l s e {
53 x i l p r i n t f (” Cannot have m u l t i p l e
54 o p e r a t o r s i n an e x p r e s s i o n .\n\r ”) ;
55 c o n t in u e ;
56 }
57 }
58 e x p r e s s i o n [num vals] = r e s u l t ;
59 num vals ++;
60
61 x i l p r i n t f (”%s\n\r ” , e x p r e s s i o n) ;
62 h a s b e e n c l e a r e d = 0 ;
63 }
64 / / Compute answer

65 e l s e i f (g e t a n s w e r && (num vals > 2)) {
66 e x p r e s s i o n [num vals] = ’\0 ’ ;
67 p r i n t A n s w e r (e x p r e s s i o n , num vals , op) ;
68
69 c a p t u r e d a t a = 0 ;
70 o l d c a p t u r e d a t a = 0 ;
71 op = ’ $ ’ ;
72 num vals = 0 ;
73 i n t i = 0 ;
74 f o r (; i < EXPRESSION SIZE ; i ++)
75 e x p r e s s i o n [i] = 0 ;
76 x i l p r i n t f (” Your e x p r e s s i o n has been c l e a r e d .\n\r ”) ;
77 }
78 }
79
80 re turn 0 ;
81 }

The conditional statements shown above determine actions
based on user dip switch input. Line 37 shows a check to make
sure that the image processing code was able to determine an
actual operand or operator. A ’?’ is returned when the function
cannot determine a correct value. The next block checks to
make sure that the first input is not an operator. The check for
two back to back operators is done in the else fallthrough.

If the corner cases pass, the answer is computed for the
user and the expression is automatically cleared so that the
user can perform another operation. Flags are reset for the
next iteration of the outer loop.

Shown below is the ”printAnswer” function, which takes
care of divide-by-zero and unknown operator cases, although
the latter should never happen (due to our check in the main
function):

1 void p r i n t A n s w e r (c o n s t char∗ e x p r e s s i o n , u8 num elem , char operator) {
2 i n t a = 0 , b = 1 , r e s u l t = 0 ;
3 char e r r = 0 ;
4
5 sw i t ch (operator) {
6 case ’+ ’ :
7 s t u p i d s c a n f (e x p r e s s i o n , &a , &b) ;
8 r e s u l t = a+b ;
9 break ;

10 case ’−’ :
11 s t u p i d s c a n f (e x p r e s s i o n , &a , &b) ;
12 r e s u l t = a−b ;
13 break ;
14 case ’∗ ’ :
15 s t u p i d s c a n f (e x p r e s s i o n , &a , &b) ;
16 r e s u l t = a∗b ;
17 break ;
18 case ’ / ’ :
19 s t u p i d s c a n f (e x p r e s s i o n , &a , &b) ;
20 i f (b == 0) {
21 x i l p r i n t f (” Cannot d i v i d e by z e r o .\n\r ”) ;
22 r e s u l t = 0 ;
23 e r r = 1 ;
24 }
25 e l s e
26 r e s u l t = a / b ;
27 break ;
28 d e f a u l t :
29 x i l p r i n t f (” E r r o r : unknown o p e r a t o r .\n\r ”) ;
30 e r r = 1 ;
31 }
32 i f (! e r r)
33 x i l p r i n t f (” Your answer i s : %d\n\r ” , r e s u l t) ;
34 }

B. void calcThreshold(int xBase, int yBase, short *threshol-

dRGB)

This function calculates the RBG color values of the white
background. The sample is taken from a block to the top right
of the scanning area. For each pixel in the sample block, we
read the RGBx444 value from DDR2. We then use bitmasks to
extract the correct values for red, green, and blue and add each
to a sum for that color. After all the values have been added,
the average color is computed by dividing by the number of
pixels in the sample block. Finally, the averages are stored in
a short array, threshholdRGB.

1 void c a l c T h r e s h o l d (i n t xBase , i n t yBase , s h o r t ∗th resholdRGB) {
2 i n t x S t a r t = xBase−60; / / t h e +1 i s t o a v o i d t h e red boxes , n o t s u r e i f needed

3 i n t y S t a r t = yBase−60; / / ˆ ˆ

4 i n t posX , posY ;
5 i n t xEnd = x S t a r t + GRID WIDTH ;
6 i n t yEnd = y S t a r t + GRID LENGTH ;
7
8 / / Average t h e p i x e l c o l o r o f t h e b l o c k

9 s h o r t numPixe l s = GRID WIDTH ∗ GRID LENGTH ;
10 s h o r t avgR = 0 ;
11 s h o r t avgG = 0 ;
12 s h o r t avgB = 0 ;
13 u16 c o l o r = 0 ;
14
15 f o r (posY = y S t a r t ; posY < yEnd ; posY ++) {
16 f o r (posX = x S t a r t ; posX < xEnd ; posX ++) {
17 c o l o r = XIo In16 (XPAR DDR2 SDRAM MPMC BASEADDR + 2∗(posY∗2560+posX)) ;
18 avgB += (c o l o r &0x000f) ;
19 avgG += ((c o l o r &0x00f0)>>4);
20 avgR += ((c o l o r &0x0f00)>>8);
21 }
22 }
23
24 avgR /= numPixe l s ;

6

25 avgG /= numPixe l s ;
26 avgB /= numPixe l s ;
27
28 thresholdRGB [0] = avgR ;
29 thresholdRGB [1] = avgG ;
30 thresholdRGB [2] = avgB ;
31 }

C. int processGridBlock(char blockno, int xBase, int yBase,

short *thresholdRGB)

The grid block structure is shown below:

Figure 4: Grid block structure.

This function uses the same process as calcThreshold, but
instead of determining the white threshold, it determines the
average color value of one of the 15 grid blocks. After the
averages are computed, they are compared against the precom-
puted RGB thresholds. If at least two of the three averages are
below their respective threshold, then we determine that there
is a line inside that grid block, and return a 1. Otherwise, we
determine that block is empty and thus return a 0.

1 i n t p r o c e s s G r i d B l o c k (char blockno , i n t xBase , i n t yBase , s h o r t ∗th resholdRGB) {
2 i n t x S t a r t = b lockno % 3 ;
3 i n t y S t a r t = 0 ;
4 i f (b lockno < 3) y S t a r t = 0 ;
5 e l s e i f (b lockno < 6) y S t a r t = 1 ;
6 e l s e i f (b lockno < 9) y S t a r t = 2 ;
7 e l s e i f (b lockno < 12) y S t a r t = 3 ;
8 e l s e y S t a r t = 4 ;
9

10 i n t posY = yBase + y S t a r t∗GRID LENGTH ;
11 i n t yEnd = posY + GRID LENGTH ;
12 i n t posX = xBase + GRID WIDTH + x S t a r t∗GRID WIDTH ;
13 x S t a r t = posX ;
14 i n t xEnd = posX + GRID WIDTH ;
15
16
17 / / Average t h e p i x e l c o l o r o f t h e b l o c k

18 s h o r t numPixe l s = GRID WIDTH ∗ GRID LENGTH ;
19 s h o r t avgR = 0 ;
20 s h o r t avgG = 0 ;
21 s h o r t avgB = 0 ;
22 u16 c o l o r = 0 ;
23
24 f o r (; posY < yEnd ; posY ++) {
25 f o r (posX = x S t a r t ; posX < xEnd ; posX ++) {
26 c o l o r = XIo In16 (XPAR DDR2 SDRAM MPMC BASEADDR
27 + 2∗(posY∗2560+posX)) ;
28
29 avgB += (c o l o r &0x000f) ;
30 avgG += ((c o l o r &0x00f0)>>4);
31 avgR += ((c o l o r &0x0f00)>>8);
32 }
33 }
34
35 avgR /= numPixe l s ;
36 avgG /= numPixe l s ;

37 avgB /= numPixe l s ;
38
39 u8 sum = 0 ;
40 i f (avgR < th resholdRGB [0]−2){
41 sum += 1 ;
42 }
43 i f (avgG < th resholdRGB [1]−2){
44 sum += 1 ;
45 }
46 i f (avgB < th resholdRGB [2]−2){
47 sum += 1 ;
48 }
49
50 i f (sum >= 2)
51 re turn 1 ;
52
53 re turn 0 ;
54 }

D. short processImage(int xBase, int yBase)

This function uses the above functions to scan a 200 x 200
pixel area of the image. First, the white threshold is determined
by calcThreshold. Then, processGridBlock is called on each
of the 15 blocks shown in Fig. . If processGridBlock returns
a 1, a 1 is inserted into the corresponding bit location of the
16-bit bitmap (diagrammed in the figure shown below).

Figure 5: Structure of a bitmap in memory for our implementation.

When all the blocks have been processed, the bitmap is
returned. The code is shown below:

1 s h o r t p r o c e s s I m a g e (i n t xBase , i n t yBase) {
2 s h o r t num = 0 ;
3 s h o r t t h r e s h o l d [3] ;
4 char n ;
5
6 c a l c T h r e s h o l d (xBase , yBase , t h r e s h o l d) ;
7
8 i n t v a l ;
9 f o r (n = 0 ; n < NUM BLOCKS; n ++) {

10 v a l = p r o c e s s G r i d B l o c k (n , xBase , yBase , t h r e s h o l d) ;
11 i f (v a l) {
12 num |= (BASE MASK>> n) ;
13 }
14 }
15 re turn num ;
16 }

E. char determineChar(short *arr, int len)

This function takes in an array of 2-byte bitmaps, averages
them into a single bitmap, and determines what character that
bitmap corresponds to. To do this, we first determine the sum
of each position in the bitmap by traversing through each bit
in the bitmap and if it is a 1, adding 1 to a running sum
for that position. This is repeated for all bitmaps in the array.
Once the sums are computed, the average of each position is
calculated by dividing each sum by the number of elements
in the array. If the average for a position is greater than or
equal to 0.5, a 1 is put in that position for the final bitmap.
Otherwise, a 0 is put in that position. Once this has been done

7

for all 15 positions, the final bitmap can be used to determine
the correct character. For all characters except /, the bitmap is
switched against bitmaps that we predetermined to match each
character. If the final bitmap does not match any of these, a ?
is returned. For detecting /, we check if the top row (blocks
0 - 2) and the bottom row (blocks 12 - 14) are empty. This
ensures that we dont detect a number as the division operator.
We also make check that blocks 3 and 11 are empty, so that
we dont falsely identify a * as a / operator. The last check
for division is to ensure blocks 5 and 9 are both filled, which
ensures + and - do not trigger the division operator.

1 char d e t e r m i n e C h a r (s h o r t ∗a r r , i n t l e n) {
2 f l o a t sum [1 5] = {0};
3 i n t i , j ;
4
5 f o r (i = 0 ; i < l e n ; i ++) {
6 s h o r t b i t c o d e = a r r [i] ;
7 f o r (j = 0 ; j < NUM BLOCKS; j ++) {
8 i f (b i t c o d e & (BASE MASK>> j)) {
9 sum [j] + + ;

10 }
11 }
12 }
13
14 f l o a t avg ;
15 s h o r t num = 0 ;
16 s h o r t p r i n t v a l ;
17 f o r (j = 0 ; j < NUM BLOCKS; j ++) {
18 avg = sum [j] / l e n ;
19 i f (avg >= 0 . 5) {
20 num |= (BASE MASK>> j) ;
21 }
22 }
23
24 / / D i v i s i o n d e t e c t i o n

25 i f ((˜ num & MASK DIV1) == MASK DIV1 && (num & MASK DIV2)) {
26 / / c h e c k s i f b l o c k s 0 − 3 and 11 −14 rows are n o t f i l l e d

27 / / && i f b l o c k s 5 and 9 are f i l l e d

28 re turn ’ / ’ ;
29 }
30
31 sw i t ch (num) {
32 case MASK0: re turn ’ 0 ’ ;
33 case MASK1: re turn ’ 1 ’ ;
34 case MASK2: re turn ’ 2 ’ ;
35 case MASK3: re turn ’ 3 ’ ;
36 case MASK4: re turn ’ 4 ’ ;
37 case MASK5: re turn ’ 5 ’ ;
38 case MASK6: re turn ’ 6 ’ ;
39 case MASK7: re turn ’ 7 ’ ;
40 case MASK8: re turn ’ 8 ’ ;
41 case MASK9: re turn ’ 9 ’ ;
42 case MASK ADD: re turn ’+ ’ ;
43 case MASK MULT: re turn ’∗ ’ ;
44 case MASK SUB: re turn ’−’ ;
45 d e f a u l t : re turn ’ ? ’ ;
46 }
47 }

F. void stupidscanf(const char* expression, int *a, int *b)

Takes in a C string of the form [num-
ber1][operator][number2] and stores number1 and number2
in integers a and b. The function goes through the string from
left to right, multiplying the result so far by 10 and adding
the new digit in. The operator is used to determine when to
start calculating int b.

1 void s t u p i d s c a n f (c o n s t char∗ e x p r e s s i o n , i n t ∗a , i n t ∗b) {
2 i n t t a = 0 , t b = 0 , i , s t a t e = 1 ;
3 unsigned l e n = s t r l e n (e x p r e s s i o n) ;
4
5 f o r (i = 0 ; i < l e n ; i ++) {

6 i f (s t a t e) {
7 sw i t ch (e x p r e s s i o n [i]) {
8 case ’+ ’ :
9 case ’−’ :

10 case ’∗ ’ :
11 case ’ / ’ :
12 s t a t e = 0 ;
13 break ;
14 d e f a u l t :
15 t a ∗= 1 0 ;
16 t a += (e x p r e s s i o n [i] − ’ 0 ’) ;
17 break ;
18 }
19 }
20 e l s e {
21 t b ∗= 1 0 ;
22 t b += (e x p r e s s i o n [i] − ’ 0 ’) ;
23 }
24 }
25
26 ∗a = t a ;
27 ∗b = t b ;
28 }

V. TESTING

In the EDK, testing was mainly dealt with by avoiding it.
After our project pivot and all the tribulations that it entailed,
we decided to be very careful about adding new peripherals.
Before exporting, we precisely determined the exact modules
that we would need. We added a GPIO peripheral to ensure
that we could use the switches as a camera press action, an
equation solver action, and a reset action. Using experience
from previous projects, this was easy enough to do simply by
connecting the correct ports and modifying the UCF file.

The main hardware challenge was a faulty camera module.
For certain modes of operation, the camera would get stuck
in a no-instruction loop, waiting for certain memory addresses
to be correctly set. We spent a lot of time attempting to fix
this in software, but in the end, we swapped the physical
camera module, and everything began to work. We suspect
this had to do with certain registers being non-functional or
shorted incorrectly. This fix enabled us to capture in the full
1280x720p mode.

Most testing in the SDK was performed using the
xil printf() function to allow us to use debug statements to
see intermediate steps of certain algorithms. In general, our
approach was to make several large changes in one file at
a time (for example, either in main.c or in determineChar.c
but not in both) so as to avoid multiple concurrent points of
failure, but also so that each run of the project was not for a
single inconsequential change (recall that the cameras take 5
minutes to initialize).

The main challenge that arose was debugging how to
convert (scan) a string for a pattern of: number-operator-
number. We intended to use the sscanf() function in the STL
library but quickly ran into memory issues (with the compiler
complaining the project could not fit into the allocated .text

8

region). To fix this problem, we wrote our own version of
a simple scanf() function to perform a more optimized and
specific portion of the desired sscanf().

For the final presentation, we decided to generate digital
representations of the numbers in order to increase digit
uniformity. Also, by displaying these on one of the monitors,
we got a light intensity increase for free (and did not have to
use backlighting).

Figure 6: Digital representation of the numbers and operators used for testing and
demonstration.

This proved to be very effective for testing and the demo.

VI. CONCLUSION

Our calculator was able to pick up operators and operands
with zero false positives. Edge cases such as divide by zero,
leading operators, and back-to-back operators were correctly
handled. Many 4-digit number combinations were tested,
along with all of the possible operators. The calculator evalu-
ated expressions correctly.

VII. DISCUSSION

Since MicroBlaze is not currently in use or active devel-
opment by any large organization, the resources are scarce
and the support network is weak. It was difficult to find help
outside of the classroom for some of our issues. Much of the
time we had to use trial-and-error.

We initially planned to draw the letters on paper cards.
However, the camera’s exposure levels were too low to pick up
the whites accurately so we tried different lighting methods.
First, we tried to use an x-ray viewer as a backlight, but the
60Hz noise on the florescent bulbs interfered with the image
capture. We also tried to build an LED backlight but weren’t
able to create a good enough diffuser. In true Xilinx/MicroB-
laze/Digilent fashion, the camera exposure levels magically
fixed themselves so we were able to remove the backlight

altogether for testing. We opted to use the extra monitor to
display the numbers and operators for the final presentation,
since it was easier to maintain digit uniformity.

	Introduction
	Project Background
	Tutorial
	Design
	main function
	void calcThreshold(int xBase, int yBase, short *thresholdRGB)
	int processGridBlock(char blockno, int xBase, int yBase, short *thresholdRGB)
	short processImage(int xBase, int yBase)
	char determineChar(short *arr, int len)
	void stupidscanf(const char* expression, int *a, int *b)

	Testing
	Conclusion
	Discussion

